深度优先搜索(DFS、深搜)和广度优先搜索(BFS、广搜)
前边介绍了有关图的 4 种存储方式,本节介绍如何对存储的图中的顶点进行遍历。常用的遍历方式有两种:深度优先搜索和广度优先搜索。
图 1 无向图
深度优先搜索的过程类似于树的先序遍历,首先从例子中体会深度优先搜索。例如图 1 是一个无向图,采用深度优先算法遍历这个图的过程为:
根据上边的过程,可以得到图 1 通过深度优先搜索获得的顶点的遍历次序为:
所谓深度优先搜索,是从图中的一个顶点出发,每次遍历当前访问顶点的临界点,一直到访问的顶点没有未被访问过的临界点为止。然后采用依次回退的方式,查看来的路上每一个顶点是否有其它未被访问的临界点。访问完成后,判断图中的顶点是否已经全部遍历完成,如果没有,以未访问的顶点为起始点,重复上述过程。
采用深度优先搜索算法遍历图的实现代码为:
最后还需要做的操作就是查看图中是否存在尚未被访问的顶点,若有,则以该顶点为起始点,重复上述遍历的过程。
还拿图 1 中的无向图为例,假设 V1 作为起始点,遍历其所有的邻接点 V2 和 V3 ,以 V2 为起始点,访问邻接点 V4 和 V5 ,以 V3 为起始点,访问邻接点 V6 、 V7 ,以 V4 为起始点访问 V8 ,以 V5 为起始点,由于 V5 所有的起始点已经全部被访问,所有直接略过, V6 和 V7 也是如此。
以 V1 为起始点的遍历过程结束后,判断图中是否还有未被访问的点,由于图 1 中没有了,所以整个图遍历结束。遍历顶点的顺序为:
广度优先搜索的实现需要借助队列这一特殊数据结构,实现代码为:
例如,使用上述程序代码遍历图 1 中的无向图,运行结果为:
深度优先搜索(简称“深搜”或DFS)
图 1 无向图
深度优先搜索的过程类似于树的先序遍历,首先从例子中体会深度优先搜索。例如图 1 是一个无向图,采用深度优先算法遍历这个图的过程为:
- 首先任意找一个未被遍历过的顶点,例如从 V1 开始,由于 V1 率先访问过了,所以,需要标记 V1 的状态为访问过;
- 然后遍历 V1 的邻接点,例如访问 V2 ,并做标记,然后访问 V2 的邻接点,例如 V4 (做标记),然后 V8 ,然后 V5 ;
- 当继续遍历 V5 的邻接点时,根据之前做的标记显示,所有邻接点都被访问过了。此时,从 V5 回退到 V8 ,看 V8 是否有未被访问过的邻接点,如果没有,继续回退到 V4 , V2 , V1 ;
- 通过查看 V1 ,找到一个未被访问过的顶点 V3 ,继续遍历,然后访问 V3 邻接点 V6 ,然后 V7 ;
- 由于 V7 没有未被访问的邻接点,所有回退到 V6 ,继续回退至 V3 ,最后到达 V1 ,发现没有未被访问的;
- 最后一步需要判断是否所有顶点都被访问,如果还有没被访问的,以未被访问的顶点为第一个顶点,继续依照上边的方式进行遍历。
根据上边的过程,可以得到图 1 通过深度优先搜索获得的顶点的遍历次序为:
V1 -> V2 -> V4 -> V8 -> V5 -> V3 -> V6 -> V7
所谓深度优先搜索,是从图中的一个顶点出发,每次遍历当前访问顶点的临界点,一直到访问的顶点没有未被访问过的临界点为止。然后采用依次回退的方式,查看来的路上每一个顶点是否有其它未被访问的临界点。访问完成后,判断图中的顶点是否已经全部遍历完成,如果没有,以未访问的顶点为起始点,重复上述过程。
深度优先搜索是一个不断回溯的过程。
采用深度优先搜索算法遍历图的实现代码为:
#include <stdio.h> #define MAX_VERtEX_NUM 20 //顶点的最大个数 #define VRType int //表示顶点之间的关系的变量类型 #define InfoType char //存储弧或者边额外信息的指针变量类型 #define VertexType int //图中顶点的数据类型 typedef enum{false,true}bool; //定义bool型常量 bool visited[MAX_VERtEX_NUM]; //设置全局数组,记录标记顶点是否被访问过 typedef struct { VRType adj; //对于无权图,用 1 或 0 表示是否相邻;对于带权图,直接为权值。 InfoType * info; //弧或边额外含有的信息指针 }ArcCell,AdjMatrix[MAX_VERtEX_NUM][MAX_VERtEX_NUM]; typedef struct { VertexType vexs[MAX_VERtEX_NUM]; //存储图中顶点数据 AdjMatrix arcs; //二维数组,记录顶点之间的关系 int vexnum,arcnum; //记录图的顶点数和弧(边)数 }MGraph; //根据顶点本身数据,判断出顶点在二维数组中的位置 int LocateVex(MGraph * G,VertexType v){ int i=0; //遍历一维数组,找到变量v for (; i<G->vexnum; i++) { if (G->vexs[i]==v) { break; } } //如果找不到,输出提示语句,返回-1 if (i>G->vexnum) { printf("no such vertex.\n"); return -1; } return i; } //构造无向图 void CreateDN(MGraph *G){ scanf("%d,%d",&(G->vexnum),&(G->arcnum)); for (int i=0; i<G->vexnum; i++) { scanf("%d",&(G->vexs[i])); } for (int i=0; i<G->vexnum; i++) { for (int j=0; j<G->vexnum; j++) { G->arcs[i][j].adj=0; G->arcs[i][j].info=NULL; } } for (int i=0; i<G->arcnum; i++) { int v1,v2; scanf("%d,%d",&v1,&v2); int n=LocateVex(G, v1); int m=LocateVex(G, v2); if (m==-1 ||n==-1) { printf("no this vertex\n"); return; } G->arcs[n][m].adj=1; G->arcs[m][n].adj=1;//无向图的二阶矩阵沿主对角线对称 } } int FirstAdjVex(MGraph G,int v) { //查找与数组下标为v的顶点之间有边的顶点,返回它在数组中的下标 for(int i = 0; i<G.vexnum; i++){ if( G.arcs[v][i].adj ){ return i; } } return -1; } int NextAdjVex(MGraph G,int v,int w) { //从前一个访问位置w的下一个位置开始,查找之间有边的顶点 for(int i = w+1; i<G.vexnum; i++){ if(G.arcs[v][i].adj){ return i; } } return -1; } void visitVex(MGraph G, int v){ printf("%d ",G.vexs[v]); } void DFS(MGraph G,int v){ visited[v] = true;//标记为true visitVex( G, v); //访问第v 个顶点 //从该顶点的第一个边开始,一直到最后一个边,对处于边另一端的顶点调用DFS函数 for(int w = FirstAdjVex(G,v); w>=0; w = NextAdjVex(G,v,w)){ //如果该顶点的标记位false,证明未被访问,调用深度优先搜索函数 if(!visited[w]){ DFS(G,w); } } } //深度优先搜索 void DFSTraverse(MGraph G){// int v; //将用做标记的visit数组初始化为false for( v = 0; v < G.vexnum; ++v){ visited[v] = false; } //对于每个标记为false的顶点调用深度优先搜索函数 for( v = 0; v < G.vexnum; v++){ //如果该顶点的标记位为false,则调用深度优先搜索函数 if(!visited[v]){ DFS( G, v); } } } int main() { MGraph G;//建立一个图的变量 CreateDN(&G);//初始化图 DFSTraverse(G);//深度优先搜索图 return 0; }以图 1 为例,运行结果为:
8,9
1
2
3
4
5
6
7
8
1,2
2,4
2,5
4,8
5,8
1,3
3,6
6,7
7,3
1 2 4 8 5 3 6 7
1
2
3
4
5
6
7
8
1,2
2,4
2,5
4,8
5,8
1,3
3,6
6,7
7,3
1 2 4 8 5 3 6 7
广度优先搜索
广度优先搜索类似于树的层次遍历。从图中的某一顶点出发,遍历每一个顶点时,依次遍历其所有的邻接点,然后再从这些邻接点出发,同样依次访问它们的邻接点。按照此过程,直到图中所有被访问过的顶点的邻接点都被访问到。最后还需要做的操作就是查看图中是否存在尚未被访问的顶点,若有,则以该顶点为起始点,重复上述遍历的过程。
还拿图 1 中的无向图为例,假设 V1 作为起始点,遍历其所有的邻接点 V2 和 V3 ,以 V2 为起始点,访问邻接点 V4 和 V5 ,以 V3 为起始点,访问邻接点 V6 、 V7 ,以 V4 为起始点访问 V8 ,以 V5 为起始点,由于 V5 所有的起始点已经全部被访问,所有直接略过, V6 和 V7 也是如此。
以 V1 为起始点的遍历过程结束后,判断图中是否还有未被访问的点,由于图 1 中没有了,所以整个图遍历结束。遍历顶点的顺序为:
V1 -> V2 -> v3 -> V4 -> V5 -> V6 -> V7 -> V8
广度优先搜索的实现需要借助队列这一特殊数据结构,实现代码为:
#include <stdio.h> #include <stdlib.h> #define MAX_VERtEX_NUM 20 //顶点的最大个数 #define VRType int //表示顶点之间的关系的变量类型 #define InfoType char //存储弧或者边额外信息的指针变量类型 #define VertexType int //图中顶点的数据类型 typedef enum{false,true}bool; //定义bool型常量 bool visited[MAX_VERtEX_NUM]; //设置全局数组,记录标记顶点是否被访问过 typedef struct Queue{ VertexType data; struct Queue * next; }Queue; typedef struct { VRType adj; //对于无权图,用 1 或 0 表示是否相邻;对于带权图,直接为权值。 InfoType * info; //弧或边额外含有的信息指针 }ArcCell,AdjMatrix[MAX_VERtEX_NUM][MAX_VERtEX_NUM]; typedef struct { VertexType vexs[MAX_VERtEX_NUM]; //存储图中顶点数据 AdjMatrix arcs; //二维数组,记录顶点之间的关系 int vexnum,arcnum; //记录图的顶点数和弧(边)数 }MGraph; //根据顶点本身数据,判断出顶点在二维数组中的位置 int LocateVex(MGraph * G,VertexType v){ int i=0; //遍历一维数组,找到变量v for (; i<G->vexnum; i++) { if (G->vexs[i]==v) { break; } } //如果找不到,输出提示语句,返回-1 if (i>G->vexnum) { printf("no such vertex.\n"); return -1; } return i; } //构造无向图 void CreateDN(MGraph *G){ scanf("%d,%d",&(G->vexnum),&(G->arcnum)); for (int i=0; i<G->vexnum; i++) { scanf("%d",&(G->vexs[i])); } for (int i=0; i<G->vexnum; i++) { for (int j=0; j<G->vexnum; j++) { G->arcs[i][j].adj=0; G->arcs[i][j].info=NULL; } } for (int i=0; i<G->arcnum; i++) { int v1,v2; scanf("%d,%d",&v1,&v2); int n=LocateVex(G, v1); int m=LocateVex(G, v2); if (m==-1 ||n==-1) { printf("no this vertex\n"); return; } G->arcs[n][m].adj=1; G->arcs[m][n].adj=1;//无向图的二阶矩阵沿主对角线对称 } } int FirstAdjVex(MGraph G,int v) { //查找与数组下标为v的顶点之间有边的顶点,返回它在数组中的下标 for(int i = 0; i<G.vexnum; i++){ if( G.arcs[v][i].adj ){ return i; } } return -1; } int NextAdjVex(MGraph G,int v,int w) { //从前一个访问位置w的下一个位置开始,查找之间有边的顶点 for(int i = w+1; i<G.vexnum; i++){ if(G.arcs[v][i].adj){ return i; } } return -1; } //操作顶点的函数 void visitVex(MGraph G, int v){ printf("%d ",G.vexs[v]); } //初始化队列 void InitQueue(Queue ** Q){ (*Q)=(Queue*)malloc(sizeof(Queue)); (*Q)->next=NULL; } //顶点元素v进队列 void EnQueue(Queue **Q,VertexType v){ Queue * element=(Queue*)malloc(sizeof(Queue)); element->data=v; element->next = NULL; Queue * temp=(*Q); while (temp->next!=NULL) { temp=temp->next; } temp->next=element; } //队头元素出队列 void DeQueue(Queue **Q,int *u){ (*u)=(*Q)->next->data; (*Q)->next=(*Q)->next->next; } //判断队列是否为空 bool QueueEmpty(Queue *Q){ if (Q->next==NULL) { return true; } return false; } //广度优先搜索 void BFSTraverse(MGraph G){// int v; //将用做标记的visit数组初始化为false for( v = 0; v < G.vexnum; ++v){ visited[v] = false; } //对于每个标记为false的顶点调用深度优先搜索函数 Queue * Q; InitQueue(&Q); for( v = 0; v < G.vexnum; v++){ if(!visited[v]){ visited[v]=true; visitVex(G, v); EnQueue(&Q, G.vexs[v]); while (!QueueEmpty(Q)) { int u; DeQueue(&Q, &u); u=LocateVex(&G, u); for (int w=FirstAdjVex(G, u); w>=0; w=NextAdjVex(G, u, w)) { if (!visited[w]) { visited[w]=true; visitVex(G, w); EnQueue(&Q, G.vexs[w]); } } } } } } int main() { MGraph G;//建立一个图的变量 CreateDN(&G);//初始化图 BFSTraverse(G);//广度优先搜索图 return 0; }
例如,使用上述程序代码遍历图 1 中的无向图,运行结果为:
8,9
1
2
3
4
5
6
7
8
1,2
2,4
2,5
4,8
5,8
1,3
3,6
6,7
7,3
1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8
1,2
2,4
2,5
4,8
5,8
1,3
3,6
6,7
7,3
1 2 3 4 5 6 7 8
总结
本节介绍了两种遍历图的方式:深度优先搜索算法和广度优先搜索算法。深度优先搜索算法的实现运用的主要是回溯法,类似于树的先序遍历算法。广度优先搜索算法借助队列的先进先出的特点,类似于树的层次遍历。推荐阅读
图的深度优先搜索和广度优先搜索 | 图文并茂的介绍了两种搜索算法的具体实现过程 |
深度优先搜索(DNS)和广度优先搜索(BFS) | 详细介绍了两种搜索算法的实现过程 |
图的遍历算法(深度优先算法DFS和广度优先算法BFS) | 详细介绍了两种算法的实现过程,并配备的 C++ 的实现代码 |
广度优先搜索(BFS)和深度优先搜索(DFS)的应用实例 | 从实例出发介绍两种搜索算法 |
所有教程
- C语言入门
- C语言编译器
- C语言项目案例
- 数据结构
- C++
- STL
- C++11
- socket
- GCC
- GDB
- Makefile
- OpenCV
- Qt教程
- Unity 3D
- UE4
- 游戏引擎
- Python
- Python并发编程
- TensorFlow
- Django
- NumPy
- Linux
- Shell
- Java教程
- 设计模式
- Java Swing
- Servlet
- JSP教程
- Struts2
- Maven
- Spring
- Spring MVC
- Spring Boot
- Spring Cloud
- Hibernate
- Mybatis
- MySQL教程
- MySQL函数
- NoSQL
- Redis
- MongoDB
- HBase
- Go语言
- C#
- MATLAB
- JavaScript
- Bootstrap
- HTML
- CSS教程
- PHP
- 汇编语言
- TCP/IP
- vi命令
- Android教程
- 区块链
- Docker
- 大数据
- 云计算