Spark Streaming编程模型
本节将介绍 Spark Streaming 的编程模型,包括 DStream 的操作流程和使用方法。
在内部实现上,DStream 由一组时间序列上连续的 RDD 来表示。如图 1 所示,每个 RDD 都包含了自己特定时间间隔内的数据流。
图 1 DStream中在时间轴下生成离散的RDD序列
如图 2 所示,对 DStream 中数据的各种操作也是映射到内部的 RDD 上来进行的,可以通过 RDD 的 Transformation 生成新的 DStream。这里的执行引擎是 Spark。
图 2 DStream中的数据操作流程
前面的例子已经使用了 ssc.socketTextStream() 方法,即通过 TCP 套接字连接,从文本数据中创建一个 DStream。除了套接字之外,StreamingContext 的 API 还提供了从文件和 Akka actors 中创建 DStreams 作为输入源的方法。
Spark Streaming 提供了streamingContext.fileStream(dataDirectory) 方法,该方法可以从任何文件系统(如 HDFS、S3、NFS 等)的文件中读取数据,然后创建一个 DStream。
Spark Streaming 监控 dataDirectory 目录和在该目录下的所有文件的创建处理过程。需要注意的是,文件必须是具有相同的数据格式的,创建的文件必须在 dataDirectory 目录下。对于简单的文本文件,可以使用一个简单的方法 StreamingContext.textFileStream(dataDirectory) 来读取数据。
Spark Streaming 也可以基于自定义 Actors 的流创建 DStream。通过 Akka actors 接收数据流的使用方法是 streamingContext.actorStream(actorProps,actor—name)。
Spark Streaming 使用 streamingContext.queueStream(queueOfRDDs)方法可以创建基于 RDD 队列的 DStream,每个 RDD 队列将被视为 DStream 中的一块数据流进行加工处理。
1)在 sbt 或 maven 工程里添加 spark-streaming-twitter_2.10 依赖。
2)开发:导入 TwitterUtils 包,通过 TwitterUtils.createStream 方法创建一个 DStream。
3)部署:添加所有依赖的 Jar 包,然后部署应用程序。
需要注意的是,这些高级来源一般在 Spark Shell 中不可用,因此基于这些高级来源的应用不能在 Spark Shell 中进行测试。如果必须在 Spark Shell 中使用它们,则需要下载相应的 maven 工程的 Jar 依赖并添加到类路径中。另外,输入 DStream 也可以创建自定义的数据源,需要做的就是实现一个用户定义的接收器。
DStream 的操作流程
DStream 作为 Spark Streaming 的基础抽象,它代表持续性的数据流。这些数据流既可以通过外部输入源来获取,也可以通过现有的 DStream 的 Transformation 操作来获得。在内部实现上,DStream 由一组时间序列上连续的 RDD 来表示。如图 1 所示,每个 RDD 都包含了自己特定时间间隔内的数据流。
图 1 DStream中在时间轴下生成离散的RDD序列
如图 2 所示,对 DStream 中数据的各种操作也是映射到内部的 RDD 上来进行的,可以通过 RDD 的 Transformation 生成新的 DStream。这里的执行引擎是 Spark。
图 2 DStream中的数据操作流程
Spark Streaming 使用
作为构建于 Spark 之上的应用框架,Spark Streaming 承袭了 Spark 的编程风格。本节以 Spark Streaming 官方提供的 WordCount 代码为例来介绍 Spark Streaming 的使用方式。import org.apache.spark._ import org.apache.spark.streaming._ import org.apache.spark.streaming.StreamingContext._ //创建一个拥有两个工作线程,时间片长度为 1 秒的 StreamContext //主结点需要 2 核以免饥饿状态发生 val conf = new SparkConf().setMaster("local[2]").setAppName("NetworkWordCount"); val ssc = new StreamingContext(conf,Seconds(1)) // 创建连接至 hostname:port 的 DStreamCreate,如 localhost:9999 val lines = ssc.socketTextStream("localhost",9999) //把每一行分解为单词 val words = lines.flatMap (_.split("")) import org.apache.spark.streaming.StreamingContext._ //计数每一个时间片内的单词量 val pairs = words.map(word => (word, 1)) val wordCounts = pairs.reduceByKey(_+_) //打印该 DStream 生成的每个 RDD 中的前 10 个单词 wordCounts.print() ssc.start() // 启动计算 ssc.awaitTermination() //等待计算完成
1. 创建 StreamingContext 对象
Spark Streaming 初始化的主要工作是创建 Streaming Context 对象,通过创建函数的参数指明 Master Server,设定应用名称,指定 Spark Streaming 处理数据的时间间隔等。上述代码可设定应用的名称为 NetworkWordCount,处理数据的时间间隔为 1 秒。2. 创建 InputDStream
Spark Streaming 需要指明数据源。该实例指明使用 socketTextStream,也就是以 socket 连接作为数据源读取数据。Spark Streaming 支持多种不同的数据源,包括 Kafka、Flume、HDFS/S3、Kinesis、Twitter。3. 操作 DStream
对于从数据源得到的 DStream,用户可以对其进行各种操作,该实例所示的操作就是一个典型的 WordCount 执行流程。对于当前时间窗口内从数据源得到的数据,首先进行分割,然后利用 map 和 reduceByKey 方法进行计算,最后使用 print() 方法输出结果。4. 启动 Spark Streaming
之前的所有步骤只是创建了执行流程,程序没有真正连接上数据源,也没有对数据进行任何操作,只是设定好了所有的执行计划,当 ssc.start() 启动后程序才真正进行所有预期的操作。DStream 的输入源
Spark Streaming 的所有操作都是基于流的,而输入源是这一系列操作的起点。输入 DStream 和 DStream 接收的流都代表输入数据流的来源,Spark Streaming 提供了两种内置数据流来源:基础来源和高级来源。1. 基础来源
基础来源是在 StreamingContext API 中直接可用的来源,如文件系统、Socket (套接字)等。前面的例子已经使用了 ssc.socketTextStream() 方法,即通过 TCP 套接字连接,从文本数据中创建一个 DStream。除了套接字之外,StreamingContext 的 API 还提供了从文件和 Akka actors 中创建 DStreams 作为输入源的方法。
Spark Streaming 提供了streamingContext.fileStream(dataDirectory) 方法,该方法可以从任何文件系统(如 HDFS、S3、NFS 等)的文件中读取数据,然后创建一个 DStream。
Spark Streaming 监控 dataDirectory 目录和在该目录下的所有文件的创建处理过程。需要注意的是,文件必须是具有相同的数据格式的,创建的文件必须在 dataDirectory 目录下。对于简单的文本文件,可以使用一个简单的方法 StreamingContext.textFileStream(dataDirectory) 来读取数据。
Spark Streaming 也可以基于自定义 Actors 的流创建 DStream。通过 Akka actors 接收数据流的使用方法是 streamingContext.actorStream(actorProps,actor—name)。
Spark Streaming 使用 streamingContext.queueStream(queueOfRDDs)方法可以创建基于 RDD 队列的 DStream,每个 RDD 队列将被视为 DStream 中的一块数据流进行加工处理。
2.高级来源
局级来源,如 Kafka、Flume、Kinesis、Twitter 等,可以通过额外的实用工具类来创建。高级来源需要外部 non-Spark 库的接口,其中一些有复杂的依赖关系(如 Kafka、Flume)。因此通过这些来源创建 DStreams 需要明确其依赖。例如,如果想创建一个使用 Twitter tweets 的数据的 DStream 流,必须按以下步骤来做。1)在 sbt 或 maven 工程里添加 spark-streaming-twitter_2.10 依赖。
2)开发:导入 TwitterUtils 包,通过 TwitterUtils.createStream 方法创建一个 DStream。
3)部署:添加所有依赖的 Jar 包,然后部署应用程序。
需要注意的是,这些高级来源一般在 Spark Shell 中不可用,因此基于这些高级来源的应用不能在 Spark Shell 中进行测试。如果必须在 Spark Shell 中使用它们,则需要下载相应的 maven 工程的 Jar 依赖并添加到类路径中。另外,输入 DStream 也可以创建自定义的数据源,需要做的就是实现一个用户定义的接收器。
所有教程
- C语言入门
- C语言编译器
- C语言项目案例
- 数据结构
- C++
- STL
- C++11
- socket
- GCC
- GDB
- Makefile
- OpenCV
- Qt教程
- Unity 3D
- UE4
- 游戏引擎
- Python
- Python并发编程
- TensorFlow
- Django
- NumPy
- Linux
- Shell
- Java教程
- 设计模式
- Java Swing
- Servlet
- JSP教程
- Struts2
- Maven
- Spring
- Spring MVC
- Spring Boot
- Spring Cloud
- Hibernate
- Mybatis
- MySQL教程
- MySQL函数
- NoSQL
- Redis
- MongoDB
- HBase
- Go语言
- C#
- MATLAB
- JavaScript
- Bootstrap
- HTML
- CSS教程
- PHP
- 汇编语言
- TCP/IP
- vi命令
- Android教程
- 区块链
- Docker
- 大数据
- 云计算